Entropy rate of nonequilibrium growing networks
نویسندگان
چکیده
منابع مشابه
Entropy rate of nonequilibrium growing networks.
New entropy measures have been recently introduced for the quantification of the complexity of networks. Most of these entropy measures apply to static networks or to dynamical processes defined on static complex networks. In this paper we define the entropy rate of growing network models. This entropy rate quantifies how many labeled networks are typically generated by the growing network mode...
متن کاملQuantum Nonequilibrium and Entropy Creation
In sharp contrast to the corresponding classical systems cases it is not yet understood how to define a mechanical quantity with the interpretation of entropy creation rate for nonequilibrum stationary states of finite quantum systems with finite thermostats. Some aspects of this problem are discussed here in cases in which identifying entropy creation rate as a mechanical observable might be p...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملNonequilibrium Entropy in a Shock
In a classic paper, Morduchow and Libby use an analytic solution for the profile of a Navier–Stokes shock to show that the equilibrium thermodynamic entropy has a maximum inside the shock. There is no general nonequilibrium thermodynamic formulation of entropy; the extension of equilibrium theory to nonequililbrium processes is usually made through the assumption of local thermodynamic equilibr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2011
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.84.066113